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Summary

This paper develops the first theoretical housing model embodying the
approach of the recent hedonic price literature. Instead of focusing on a

scalar "housing service" consumption measure, the model portrays housing as

a commodity with two attributes: floor space and yard space. Developers
react to an hedonic price function, which relates dwelling rent' to floor
space, yard space, and location, in choosing the profit-maximizing
characteristics of their housing complexes. The spatial behavior of the
developer's choice variables is investigated (an interesting question is
whether yards are larger farther from the urban center) , and a comparative
static analysis of the housing market equilibrium is presented.





The Economics of Urban Yard Space:
An 'Implicit-Market' Model for Housing Attributes

by

Jan K. Brueckner*

1» Introduction

The last decade has witnessed a peculiar divergence between theoreti-

cal and empirical work in housing economics, A hallmark of the thriving

theoretical literature on residential location begun by Alonso [1], Muth

[7], and Mills [6] is the assumption that consumers purchase a unidimen-

sional commodity called "housing services," which is produced with inputs

of land and capital. In contrast, the burgeoning empirical hedonic price

literature (see, for example, Kain and Quigley [5] and Grether and

Mieszkowski [4]) is based on the assumption that housing is a multifaceted

commodity whose consumption cannot be captured by a scalar housing service

measure. Although Rosen [8] recently provided an abstract analysis of

the market for such a commodity, which he viewed as providing an "implicit"

market for the commodity's many attributes, a detailed theoretical housing

model embodying the implicit market approach has not been developed.

The purpose of the present paper is to tie together the divergent strands

of the housing economics literature by providing such a framework. An

urban spatial model is developed in which consumers value two housing

attributes: floor space and yard space. Housing developers take account

of the resulting hedonic price function, which relates dwelling rent

to floor space, yard space, and location, in choosing the profit-

maximizing characteristics of their housing complexes. A principal

goal of the analysis is to describe the spatial behavior of the

developer's choice variables. For example, an important question is

whether yard sizes in the model realistically increase with distance
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to the central business district (CBD) . The paper also presents a de-

tailed comparative static analysis of the housing market equilibrium,

establishing that many of the results derived by Wheaton [9] for a simple

urban economy where land and a composite conanodity are the only consump-

tion goods emerge also in a more complicated and realistic model.

By making yard space a choice variable of the housing developer,

the analysis in this paper also eliminates an unrealistic feature of the

standard residential location model. In the standard model, housing

services (which are best thought of as square feet of floor space) are

produced with inputs of capital N and land I according to a constant re-

turns function H(N,Jl). Now in order for this production function to be

well-defined, the fraction of the land input physically covered by the

structure must be specified in advance. This follows because a fixed

amount of capital which completely covers a given land area will generate

more square feet of floor space than the same amount of capital arranged

vertically in a taller structure which occupies only a fraction of the

available land (some capital will be used up in stairways, stronger foun-

dations, etc.). To insure that a unique output of floor space is asso-

ciated with each input bundle, buildings must occupy some constant frac-

tion, say 75% or 100%, of the land area rented by the developer. In the

latter case, buildings are yardless, and while the model will accurately

represent the downtown areas of most large cities, it will fail to cap-

ture an essential feature of suburban land-use. Indeed, since the propor-

tion of the land input covered by structures appears to decrease with

distance to the CBD in American cities, any model in which this proportion

is fixed will be at odds with reality. By allowing yard size to be a
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choice variable of the developer, the model developed below yields a

potentially more accurate representation of an urban economy.

Section 2 of the paper presents the basic model and derives the opti-

mality conditions. Section 3 analyses the spatial behavior of choice var-

iables, and section 4 presents the market equilibrium comparative statics.

Section 5 briefly considers the possibility of a comer solution to the

optimization problem, and section 6 contains a simimary and conclusions.

2. The Model

The first assumption in the analysis is that the (identical) urban

consumers possess the strictly quasi-concave utility function v(m,q,c),

where m is consumption of a numeraire non-housing commodity, q is consump-

tion of housing floor space, and c is consumption of yard space. Since

all urban residents receive the same income y at their CBD workplace, the

urban equilibrium must yield a uniform utility level for all residents.

That is, all urban consumption bundles must satisfy vCm,q,c) = u, where

u is the uniform utility level. Since v > 0, this relationship may be

inverted to yield m = z(q,c,u), where z^ = -v»/v^ < 0, z„ = -v_/v^ < 0,

and z_ = 1/v^ > 0. The function z(q,c,u) indicates the amount of the

non-housing good required to yield a utility level u for an individual

with given consumption levels of floor and yard space. Now the rental

payment for a given q-c bundle must leave the consumer an amount of in-

come sufficient to purchase just enough of the numeraire good to reach

utility level u. The rent R for a dwelling which provides q and c worth

of floor and yard space and is located x miles from the CBD must there-

fore satisfy



-4-

y - t(x) - R = z(q,c,u), (1)

where t(x) is commuting cost from distance x. Dwelling rent as a function

of q and c and the vector 9 e (x,u,y) is consequently

R(q,c,e) = y - tCx) - z(q,c,u). (2)

Eq. (2) is, of course, a hedonic price function which, for given income

and utility levels, relates dwelling rent to floor space, yard space, and

location. The fact that the utility function is strictly quasi-concave

implies that z is a strictly convex function of q and c and hence that R

is a strictly concave function of q and c. While this is easily seen

2
from a diagram, an analytical proof is straightforward.

Housing developers will select the characteristics of their output

to maximize profit, taking account of the hedonic price function (2).

The amount of floor space in a developer's complex is given by H(N,i!,-),

where N is the capital input, i^ is the amount of land physically covered

by structures (referred to subsequently as "building land"), and H is

strictly concave and homogeneous of degree one. Since q equals floor

space per dwelling, it follows that the number of dwellings in the com-

plex equals H(N,Jl )/q. Now the consumption of yard space by each resi-

dent will depend on the total amount of land £„ devoted to yard space in

the complex. It is assumed that yard space is like a private good in

that consumption per resident is eqxoal to £„ divided by the number of

residents in the complex: c = £„q/H(N,£^). While it might be appropriate

to assume that yard space is a pure public good (c = £„) or that it con-

stitutes an intermediate case between the extremes of pure public and

-Y 3
private goods (c = £. [H(N, Jl^ )/q] ' < y < 1). it will be shown below

i. 1



-5-

that the developer's optimization problem has no solution in either of

4
these cases.

Given the preceeding discussion, the developer's profit equals

H(N,Jl ) H(N,£ )—^ R(q,c,e) - rU, + c —^) - nN, (3)
q 1 q

where n is the (exogenous) unit rental price of capital and r is the

(endogenous) land rent per acre. Note that HR/q is total revenue for

the complex and that r(£^ + cH/q) equals total land cost. Recalling that

H exhibits constant returns, (3) may be written more compactly as

J!.^[-^ (R(q,c.6) - cr) - nS - r], (4)

where S = N/Jl is structural density and h(S) = H(S,1), with

h'(S) = H (S,l) > and h"(S) = H^j^(S,l) < 0. Note that the quantity

in brackets in (4), denoted ir, is profit per acre of building land.

For any given H , developers choose S, c, and q to maximize (4), and

competition bids up land rent r until maximized profit equals zero. De-

velopers are then indifferent to the value of i ; the size of housing com-

plexes is indeterminate. The first-order conditions for choice of struc-

tural density, yard space per dwelling, and floor space per dwelling are

respectively

II
= hliSl (R(q^c,e) - cr) - n = (5)

If =^ (R2(q.c,e) - r) =
'

(6)

If
^^ [Ri(q.c,e) - (H^,<^.^^)-<^-) -^ = 0. (7)
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and the zero profit condition is

IT =
h(S)

(R(q,c,e) - cr) - nS - r = 0. (8)

Eq. (5) says that structural density is expanded until the marginal in-

crease in revenue per acre of building land (h'R/q) equals the marginal

increase in cost from the extra capital (n) plus the marginal increase

in yard land cost required to hold yard space per dwelling fixed (h'cr/q),

Eq. (6) says that yard space per dwelling is expanded until the marginal

increase in dwelling rent (R^) equals the marginal increase in yard land

cost per dwelling (r). Eq. (7) says that dwelling size is expanded until

2
the marginal decrease in revenue per acre of building land (-hR^/q + hR/q )

equals the marginal decrease in yard land cost from holding yard space

2
per dwelling fixed (hcr/q )

.

Using (6) and (7) to eliminate terms, the Hessian matrix of ir eval-

uated at the solution to (5)- (7) may be written

h"(R-cr)/q

hR22/q

hR^i/q

hR^^/q

hRLj_/q

S A C9)

It is easy to see that the negative definiteness of A required by the

second-order condition is guaranteed by h" < and the strict concavity

of R (Rj^j^,R22 ^ ° ^^'^ \l^22 ~ ^21^ ^ °^'

Having characterized the solution to the developer's optimization

problem, it is interesting to note that the problem has no solution when

yard space affords more jointness-in-consumption than a private good.

-YLetting c = Jl„[H(N,Jl )/q] ', <_ y < 1. (4) becomes
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\l^ (R(q,c,e) - crC^ SL^)^'h - ns' - r] . (10)

Since profit per acre of building land in (10) is increasing in Ji- , it

follows that (10) is increasing in l^ for all possible values of the

variables S, c, q, and r, indicating that the developer's optimization

problem does not have a solution. Excessive jointness-in-consumption

creates increasing returns to scale, leading to a familiar non-existence

result. The intuition behind this result is especially clear in the

pure public good case. Suppose that for an arbitrary value of I.

,

maximized profit equals zero. By increasing !L^ , holding S, c, and q

fixed, the developer can increase profit per acre of building land,

driving total profit above zero. This is possible because perfect

jointness-in-consumption (c = l„) means that total yard land may be

held constant without reducing c as the population of the complex grows,

with the result that as i^ increases, a fixed yard land cost may be

spread over a larger number of acres of building land, increasing profit

per acre. In the private good case, profit per acre of building land

is independent of I. , which means that once profit is driven to zero,

the developer has nothing to gain by increasing the size of his complex.

3. The Spatial Behavior of S, c. and q

It is well known that in the standard urban model, structural density

and dwelling floor space are respectively decreasing and increasing func-

tions of distance from the CBD, undeniably realistic results (see Muth

[7]). In this section, the analysis focuses on the spatial behavior of

S, c, and q in the present model.



-8-

The first-order conditions (5)-(7) and the zero-profit condition

(8) together yield solutions for the variables S, c, q, and r in terms

of the parameters n and 9 = [x,u,y]. To compute comparative static

derivatives with respect to x for S, c, and q, the first step is to de-

termine the effect of x on r using (8) . Differentiating (8) with respect

to e recalling
'as'

'^

"a""
" a~

~ yields

lI + ili£=o (11)
36 3r 36 ^ ^^^^

or, after substitution and rearrangement,

i£ = i iR
(12)

36 0) 36 ' ^-^^^

where co = c + q/h is yard land plus building land per dwelling (recall

that h/q equals dwellings per acre of building land) . Since

3R/3x = -t'(x) from (2), (12) yields 3r/3x = -t'/w < 0. Totally dif-

ferentiating (5)- (7) taking account of the dependence of r on x and

solving for 3S/3x, 3c/ 3x, and 3q/3x then gives the following results:

IS _ -h'3r/3x hi .p R - r2 ^ = h't'q n 3^
3x -

^1 , 2 ^^1^22 ^21^ hh"u)(R-cr)
^^^^

h A| q

3c _ h"(R-cr)3r/3x h^ ,^ ^ ,,. _ t' ^21^^ " ^1

qjAl q ^1^22 " ^21

ia- f ^21 " ^22^^

^^ '
'^ R R - r2^11^22 ^21

The implications of (13) -(15) may be stated as follows:

(14)

(15)



-9-

Theorem 1 ; While 8S/3x < holds for all x, the only con-

straint on the spatial behavior of floor and yard space is

that the inequalities 3c/ 3x <_ and 3q/3x <_ cannot both

be satisfied.

The first part of the theorem, which follows directly from (13) given

h" < and R-cr > (see (8)), means that structural density is a de-

creasing function of x; as in the standard model, buildings have fewer

storeys farther from the CBD. The second part of the theorem says that

c and q cannot both be (locally) nonincreasing functions of x; if yard

space is locally nonincreasing in x, then floor space must be locally

increasing in x, and vice versa. Of course, both c and q may increase

locally in x without violating the theorem. The second part of the

theorem is proved by noting that since R is concave, 3c/3x <_ and

3q/3x £ require ^21''^ " ^i ^ ^ ^^^ ^01 ~ ^'.o''^ — ^ respectively (see

(14) and (15)). Recalling R^^.R^j < 0, it is clear that satisfaction of

both inequalities requires R < 0, which means that the first inequality

may be rewritten as hR_^/R„. <_ 1. Then, noting that the expression on

the LHS is positive, it follows given R„^ < that

-K^^l-flR^i' (^^>

where the latter inequality follows from the second original inequality.

2
But, recalling R_^ < 0, (16) reduces to ^^1^92 ~ ^21 — °' co'^tradicting

the strict concavity of R. Therefore, 3c/ 3x <_ and 3q/3x ^ cannot

both be satisfied.

Since urban economists are used to thinking of variables which are

monotonic functions of x, it is useful to state the implications of
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Theorem 1 when c and q are monotonic functions. The theorem says that

three possibilities are admissible; yard space per dwelling decreases

with X while floor space per dwelling increases with x; yard space in-

creases while floor space decreases with x; both yard space and floor

space increase with x. While no data on yard sizes in urban areas are

readily available, the latter possibility, which states that houses and

yards are bigger farther from the CBD, appears to be confirmed by casual

observation.

Although some restriction is placed on urban spatial structure by

Theorem 1, the actual spatial behavior of floor and yard space under the

model depends in part on the magnitude of R^^ . While R_^ >_ is suffi-

cient to yield 3c/ 8x, 3q/3x > (see (14) and 0-5)), the sign of R is

unfortunately ambiguous in general and is indeed negative under plausible

restrictions on the utility function. To see this, note that

R- - - —
21 3c ~ 3c v (z,q,c)

= -^ (^11^2^3 ^ ^23^^ - ^13^1^2 - ^12^3^- ^^^^

^1
.

While (17) obviously cannot be signed in general, if the utility function

is T(m) + (()(q,c), with t" < and ^. < 0, then (17) implies R-, < 0,

yielding ambiguous signs for 3c/3x and 3q/3x (see (14) and (15)). Note

that i|)^- < is a natural ass»imption since it states that the incremental

utility from extra floor space is less the larger the consumption of yard

space. It is easy to show that R^ < also holds in the less restrictive

case where the utility function is 6(m, <i(q,c)) , with 4 „ < and 6 quasi-

concave in in and <^. Finally, it is worth noting that imposing the very

strong restriction that the utility function is additively separable in
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all its argiiments with a constant marginal utility of m (v = 0) yields

R., = and 3c/3x, 3q/3x > (see (17)).

Given the ambiguity surrounding the general spatial behavior of floor

and yard space, it is worthwhile to examine a special case by solving the

first-order conditions for particular utility and production functions.

n n f- ft 1 * R
Under the assumptions that v(m,q,c) = m q c and H(N, £^) = N £^ ,

g
which gives h(S) = S , considerable manipulation yields the following

solutions for c and q:

g+gg

c = fi(y-t(x))
^1-2) '^^^

ee-a-e)a
^^^^

q = A(y-t(x))^l-^)^-^^
,

where n and A are constants. Since all parameters are positive and g < 1,

(18) implies that 3c/ 3x > and that

1^7° -6^^. (19)

Under the Cobb-Douglas assumptions, yard space per dwelling is always in-

creasing in x, while floor space per dwelling may be increasing, constant,

or decreasing in x depending on the relationship between production and

utility function parameters.

A final observation is that the ambiguous spatial behavior of floor

and yard space in the model applies also to population density; the deriva-

tive 3(1) /3x = 3(c + q/h)~ /3x cannot be signed in general (recall that

u is total land area per dwelling). Under the Cobb-Douglas assumptions,

however, population density realistically decreases with distance to the
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CBD (see Muth [7] for empirical evidence). The population density solu-

tion is

g+go

.-^ = r(y-t(x))(^-^^^^ . (20)

a decreasing function of x (F is a constant)

.

4, Market Equilibrium Comparative Statics

In this section of the paper, comparative static analysis of the

ho\ising market equilibrium is presented. The emergence of results simi-

lar to those derived by Wheaton [9] for the simplest type of urban

economy (where land and a composite commodity are the only goods con-

sumed) suggests the important conclusion that the comparative static

properties of urban models are essentially unrelated to their level of

detail and complexity.

Although the urban utility level enters parametrically in the de-

veloper's optimization problem, u is endogenously determined in a closed

city, in which population P is fixed. Recalling that r, S, c, and q

(and hence oi) are functions of n, y, and u as a result of (5)-(8) and

denoting agricultural land rent by r , the familiar equilibrium condi-

tlons which solve for u and x, the distance to the urban boundary, as

functions of the exogenous parameters [P,r ,y,n] = X are

•X

(2Trx/a))dx = P (21)

r = r

.

(22)
.A
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Eq. (21) says that the urban population just fits inside the urban

boundary, while (22) says that urban and agricultural land rents are

equal at the boundary (the upper bar on r indicates that the variable

is evaluated at x)

.

The goal of the following analysis is to compute 3u/3A and 9x/9A.

This task is greatly simplified by noting that the earlier result

(2iTx/t')|J dx = P.3r/3x = -t'/w allows (21) to be rewritten as -

Integrating by parts and substituting (22) allows (21) to be rewritten

again as

xr. fx.

ri|;dx = - P_
2-n

' (23)

1 xt"(x)
where i|)(x) = i v . (1 . , ..) . The subsequent analysis requires ^ > 0,

t V.Xy t ^X^

which may be giiaranteed by the natural assumption t" ^0. Together with

t(0) >_ 0, this assumption realistically implies that commuting cost per

mile is a decreasing function of trip length. The last step is to dif-

ferentiate (23) with respect to X and cancel terms involving 3x/3X,

which gives

'^ .3r _^ 3r 3u,
,

, x "'^A _^ 1 3P

Q
^^'•31:^^**^^ = ^7-31- '27 31 ' (24)

or, noting that 3u/3A is independent of x.

3u

3X

i-ifA l_iP
-, 3X 2-rr dX

fx
9r

, ,

(25)
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Cthis derivation follows Wheaton [9]). Now, from (12) and (2),

9r/8u = R,/u) = -z»/u < 0. Furthermore, computing 3r/3y from (12) and

making a similar calcvilation to compute 3r/3n yields

|l.= i [0 1 -Sq/h]. (26)

Then, noting 8P/3X =[1000] and 3r /3X = [0100], the following set

of results emerges from simple inspection of (25)

:

Theorem 2 ; If i|j > 0, then

A

The urban utility level decreases when the urban population or the cost

parameters r and n increase, and increases when the urban income level

increases. These intuitively sensible conclusions are identical to

those derived by Wheaton.

To compute 3x/3X, both sides of (22) are differentiated, yielding

— — — — 3r
l£ ii + ill. + l£ IH = L C971
3x 3X 3X 3u 3X 3X

^^^

^

or
— 3r — — —
3x , A ^^ 3r., /3r ,„qx

3X *'3X
" 3u 3X " 3X'''3x

^'^^^

In order to evaluate 3x/3X, the following results are needed:

LeTTima ; If c is a normal good, then -R.^R„, + R„-B_., > 0,

and if q is a normal good, then "Rjj^l^ "*" ^9^2^ '^ ^*

Hence, if both c and q are normal goods,

^ '
,. . .2, t-V24 ^ ^21^4 ^ ^-^22^4 ^ ^21^24^ ^^^ ' O'

''^^1^22"^21 ^
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To establish these results, the comparative static derivatives 3c/ 9y and

3q/3y from the problem max v(m,q,c) s.t. m+pq+pc=y are computed

and shown to have the signs of -R R , + R^R^, and -R„„R., + R^ R re-

spectively. -— H R -^ + R — is computed using (14) and (15).

Using the lemma, it is possible to establish the following conclu-

sions regarding 3x/3X:

Theorem 3 ; Suppose ^ > 0. Then 3x/3P > 0. Suppose further

that c and q are normal goods. Then 3x/3y > 0. Suppose in

addition that 3u)/3x > 0. Then 3x/3r, < 0.
A

The theorem says that the city increases in area when population increases

provided only that i|; > 0. If in addition c and q are normal goods, then

the area of the city is an increasing function of income. The additional

assumption 3a)/ 3x > (total land area per dwelling increases with x) im-

plies that the area of the city is a decreasing function of r . The first

part of the theorem is established by noting from (28) that

where the inequality follows from Theorem 2 and earlier results on the

partial derivatives of r. To sign 3x/9y, 3u/3y from (25) is used in (28)

to give

Jlr

3u
_3r ^ ^

Jo ^ *'^

which, recalling 3r/3u < 0, has the sign of

-r— ij'dx

^ '''

(30)
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^F^'^aTT^*'^''

u 0)

(31)

—(R^ - R^)^dx.
J

coca

When c and q are normal goods, the lemma gives dR,/dx > 0, implying that

R,
_5_

R, holds over the range of integration in (31) . Therefore (31) and

hence (30) is negative, and 3x/9y > follows from 3r/8x < 0.

Similarly, using (28) and (25), |^ |^ equals
dx or

.

A

3r x_

3u -.

1 -

3r ,A

(32)

which has the sign of

3r x_ 3r

^P "io ^"
i^dx . (33)

d X
Integrating the last term by parts recalling -r- —r = i|) allows (33) to be

rewritten as

d ,3r. X J

d^ ^^) V ^^ =
X d(R^/u))

^—
1 TT dx
^"^ •^

(34)

Since R, < 0, it is easily seen that dR,/dx > and 3u)/ 3x > together

imply that the integrand in (34) is positive, making (32) positive and

yielding 3x/3r < 0.
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It is interesting to note that since 3x/3n has the sign of

r^ 1 _ _ _^ (R^Sq/h - R^Sq/h)ij)dx, (35)

(oco

3x/3n < will follow if 3(Sq/h)/3x > 0. However, since it may be shown

that 3(S/h)/3x < 0, no natural restriction on 3q/3x will yield a deter-

minate sign for 3x/3n.

It is also possible to describe how the variables S, c, and q are

affected by changes in P, r. , and y:

Theorem 4 ; Given ^ > 0,

(A) i) dS/dP, dS/dr^ > 0.

ii) When c is a normal good, 3c/ 3P < and 3c/ 3r <

hold wherever 3c/ 3x >_ 0.

ili) When q is a normal good, 3q/3P < and 3q/3r <
A

hold wherever 3q/3x_> 0.

(B) When c and q are normal goods:

i) dS^/dj < 0, d?/dy > 0.

ii) At least one of the inequalities 3c /3y > and

3q /3y > must hold.

Part A of the theorem says that structural density increases at all loca-

tions when the urban population or agricultural land rent increases.

Furthermore, with normality, c and q decrease with P and r at any loca-

tion where these variables are increasing in x. For example, if c and q

are both monotonically increasing functions of x, then c and q will de-

crease at all locations when the urban population or agricultural land

rent increases. Part A of the theorem is proved by performing calculations

similar to those used to derive 3S/3x, 3c/3x, and 3q/3x above to compute
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3S
-""'^^

< (36)3u hh"a) (R-cr)

9c -^24^1 + hlhA " ^\^^^ ^\r^2l/^^
3u 2

\l^22 " ^21

3q - -^22^4 + ^21^24 ^ ^^/'"^ (R22/^-R21^

3u 2

^1^22 ~ ^21

(37)

(38)

Noting (36) and recalling 3u/3P < 0, dS/dP = (3S/3u) (ou/3P) > follows

immediately. Similarly, 3u/3r < gives dS/dr > 0. Recalling the

earlier lemma and noting (14) and (15), it follows from (37) and (38)

that when c and q are normal goods, the inequalities 3c/ 3u > and

3q/3u > are satisfied wherever 3c/ 3x, 3q/3x > 0. Therefore

dc/dP = (3c/3u) (3u/3P) and dq/dP = (3q/3u) (3u/3P) are negative where-

ever 3c/ 3x, 3q/3x > 0, with a parallel result holding with r, in place
A

of P. Note that since 3c/3x _< and 3q/3x _< cannot hold simultaneously

by Theorem 1, Theorem 4 implies that at least one of the inequalities

dc/dP < and dq/dP < must be satisfied at each location, with an

analogous result for r .

Part B of Theorem 4 says that when c and q are normal goods and in-

come increases, structural density falls at the city center (S is S

evaluated at x = 0) and rises at the old urban boundary, indicating that

at some intermediate location, dS/dy = 0, Moreover, when y increases,

c or q or both must increase at the city center. Part B is proved by

first computing 3S/3y and using (36) and (25) to evaluate

dy 3y 3u 3y j^-.-^^_-) 4 3y'

Now (39) has the sign of
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1— R, i|jdx

Jo " ^

recalling dR,/dx > and R, < 0. Repeating the argiiment with R, in place

of R, establishes dS /dy < 0.

Similar calculations yield

where B is a positive quantity. Replacing B by B > in (41) and

R22/h - R^i ^y \i ~ ^21''^ gives dq /dy. Now from above, 1 + R^ |^ < 0,

and since at least one of (R--/^ - Roi^ "^ ° ^^^ ^\l ~ ^21 ''^^ "^ ^

must hold (see Theorem 1), it follows that at least one of dc /dy >

and dq /dy > must hold.

5. A Corner Solution for Yard Space

While it is an obvious fact that large portions of American central

cities are essentially yardless, the analysis so far does not admit this

possibility since only interior solutions to the developer's problem

(c > 0) have been considered. This section briefly considers the possi-

bility of a comer solution, where yard space per dwelling equals zero.

To handle this case, eq. (6) among the original first-order conditions

must be replaced by the three Kuhn-Tucker conditions
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c >

CR2-r) £ (42)

cCR^-r) = 0.

First, it is useful to derive the spatial behavior of S and q over

a range of x where c = 0. Using (5), (7), and (8) with c set equal to

zero, it is easily shown that 3S/3x < and 9q/3x > hold at all loca-

tions where c = 0, results which are familiar from the standard model.

Note that if the central part of the city is realistically yardless, then

while S will decrease with x at all locations, yardless or otherwise

(recall Theorem 1), and q will increase with x in the yardless central

part of the city, the spatial behavior of q at more distant locations

will be constrained only by Theorem 1, with 9q/3x < admissible.

To investigate the issue of whether yardless housing will indeed be

centrally located, suppose that the necessary conditions (5), (7), (8),

and (42) hold at some x' with c = 0, If it can be shown that the neces-

sary conditions are satisfied with c = for all x < x', then it will

follow that the solution requires c = for x < x' and hence that the

range of x values where c = (if one exists) will be of the form

[0,x]. This result will emerge if -r— (R^-r)

(R -r)
]

<_ at x' will then yield (R„-r)
"^ c=0

^

> 0, since
c=0

< for X < x' , im-
c=0

plying that if the necessary conditions hold with c = at x = x', they

hold with c = for all x < x'. Unfortunately, the above inequality

need not be satisfied, making the location of the yardless part of the

city ambiguous in general. It may be shown, however, that if
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<0. then^^CR^-r)
c=0

(\^ - R23_/h)

the city has a yardless area, it will be centrally located.

> 0, guaranteeing that if

c=0

6. Sunnnary and Conclusion

This paper has constructed the first theoretical housing model in-

corporating the hedonic approach common to many recent empirical studies.

In the model, consumers value two housing attributes, floor space and

yard space, and developers react to the resulting hedonic price function

in choosing profit-maximizing characteristics for their housing com-

plexes. Since the model is explicitly spatial, the spatial behavior of

the developer's choice variables is of special interest. While it was

shown that structural density in the model is a decreasing function of

distance to the CBD, a result familiar from the standard approach, the

spatial behavior of floor space and yard space per dwelling was shown

to be subject only to the rather weak restriction that both variables

cannot decrease with distance to the CBD. This result means that while

dwelling sizes might decrease with distance, contrary to the predictions

of the standard model, such a pattern must always be accompanied by

larger yards farther from the CBD.

Comparative static analysis of the urban equilibrium showed that re-

sults similar to those demonstrated by Wheaton [9] for the simplest type

of urban economy may be derived in a much more detailed and realistic

model. In particular, it was shown that the urban utility level in a

closed city is a decreasing function of population, agricultural land

rent, and capital cost and an increasing function of income. In addi-

tion, the land area occupied by the city was shown under reasonable



-22-

assumptions to be an increasing function of population and income and a

decreasing function of agricultural rent.

Finally, it was noted that for the model to apply to typically yard-

less American central cities, the housing developer must be viewed as

achieving a corner solution with zero yard space per dwelling in such

areas. A potential criticism of the model centers on this point. It

might be argued that urban land-use patterns are a result of competition

between developers producing two distinct commodities, single- and multi-

family housing, according to different technologies. Multi-family hous-

ing, which, it might be argued, is typically yardless as a result of

consumer aversion to shared yard space, could be located centrally as

a result of the shape of its bid-rent curve, with single-family housing

found at more distant locations. While this explanation of land-use

patterns is not without appeal, its defect consists of a failure to

treat housing as a single commodity whose characteristics at a given

location reflect the response of the housing developer to locational

attributes such as accessibility to the CBD. The present model, which

embodies such an approach, offers a more unified view of urban spatial

structure.



Footnotes

*I wish to thank Jon Sonstelie for helpful comments. Any errors,
however, are my own.

Amott and MacKinnon [2] briefly consider a model somewhat similar
to the one developed below.

2
Since v is strictly qxiasi-concave av(mQ,q_,CQ) + (l-a)v(m- ,q^ ,c^ ) <

v(m*,q*,c*), where m* = am„ + (l-a)m.. and similarly for q* and c*, and

where v(m_,q_,c„) = v(m^,q^,c^) = u. Now since v(z(q*,c*,u) ,q*,c*) = u

and v^ > 0, it follows from above that m* > z(q*,c*,u). But since

m. = z(q.,c, ,u), i=0,l, it follows from the definitions of m*, q*, and

c* that az(qQ,CQ,u) + (l-a)z(q^,c^,u) > z(aqQ + (l-a)q^, ac^ + (l-a)c^,u),

establishing that z is a strictly convex function of q and c.

3
Recent work in local public finance recognizes that most public

goods exhibit congestion: holding output Q fixed, individual consump-
tion b decreases with the size T of the consuming group. A convenient

functional representation of this phenomenon is b = QT ; y = corres-
ponds to a pure public good while Y = 1 means the good is private, with
output divided equally among members of the consuming group. For

< Y < 1, congestability lies between the extremes of pure public
and private goods. For a fuller treatment of public good congestion,
see Brueckner [3].

4
Another possibility which is not considered is that for fixed JL„,

yard consumption per household may first increase and then decrease
with the number of yard users. Increased safety from crime or greater
potential for recreational activities might explain the range of increas-
ing consumption.

To save space, analysis for an open city, where utility is exogenous
and population endogenous, is not presented.

The ambigxiity of the signs of -r—, -r—,. and -r^ made it impossible

to deduce the total effects of an increase in n on S, c, and q.
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